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SUMMARY

The physical properties of the upper atmosphere are determined

principally by heat conduction, heat sources, and the barometric law.

An analysis of the integro-dffferential equation describing these physi-

cal processes has been carried out. It is found that heating of the

thermosphere due to absorption of the solar extreme ultraviolet (EUV)

radiation alone cannot explain the observed diurnal variation of density

and temperature, since it would yield a maximum of these properties

at about 17 h local time, instead of 14 h where it is observed. Secondly,

if the EUV flux is adjusted to give the observed average temperature,

then the amplitude of the diurnal density variation would be much too

large compared to the observed amplitude. Thirdly, it would require an

extremely high efficiency for the conversion of EUV radiation into heat

(i.e., comparing the required flux with Hinteregger's measurements of

the EUV flux). Thus, it is necessary to have another heat source in

addition to the absorption of EUV radiation. If an additional heat

source is used, with a maximum at about 9 h local time and a flux of

1 erg/cm 2 -sec, a time-dependent model of the upper atmosphere is

obtained that is in good agreement with the observed densities. There

is evidence that this additional heat source derives its energy ulti-

mately from the solar corpuscular radiation.

The results of calculations are presented for a model in the equa-

torial and temperate zones of the earth for those times when the av-

erage solar activity corresponds to a solar radiation flux of

200 × 10 -22 W/m2-cps at 10.7 cm wavelength. The physical properties

(temperature, density, pressure, scale height, mean molecular weight,

and the number densities of N2, O 2, O, He and H) are given as a func-

tion of local time and for the altitudes between 120 and 2050 km.
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TIME-DEPENDENT STRUCTUREOF THE UPPER ATMOSPHERE

by

Isadore Harris and Wolf gang Priester*

Goddard Space Flight Center

INTRODUCTION

The energy balance of the upper atmosphere is determined principally by absorption

of solar energy and heat transfer by conduction. These processes are described by the

time-dependent equation for heat conduction and by the heat source functions. If these

equations are combined with the equation for hydrostatic balance they yield the physical

properties of the upper atmosphere as functions of time and altitude.

The solutions of these equations have been studied in detail by a process of numerical

integration, and the results have been compared with time-dependent models derived from

satellite density data, to obtain some information on the nature of upper atmosphere heat

sources.

During the past three years, four main types of phenomena have been found to affect

the physical properties of the upper atmosphere; this information was obtained mostly from

analysis of the fluctuations in the orbital periods of artificial satellites. Any theoretical

model of the upper atmosphere should be able to account for the following phenomena:

the solar activity effect,

the diurnal variation,

the geomagnetic activity effect, and

the semiannual variations.

The solar activity effect is defined as the correlation found between density fluctua-

tions in the altitude range from 200 to 1600 km and the solar flux in the decimeter (3 to

30 cm) wavelength range (References 1-9). This correlation has again been confirmed by

Jacchia and Slowey (Reference 10) in their analysis of the orbit o[ the 12-foot balloon satel-

lite (1961 delta 1).

*National Academy of Sciences-National Research Council Senior Research Associate with the National Aeronautics and
Space Administration's Institute for Space Studies; on leave from Bonn University Observatory.



The solar decimeter radiation cannot be the physical cause of the fluctuations but is

merely an index of it. This radiation in the wavelength range from 3 to 30 cm is the so-

called "slowly varying component" produced, according to Waldmeier and M_iller (Refer-

ence 11), by thermal emission from condensations in the solar corona. This flux is pro-

portional to Afnn i ds, integrated along the ray path through the condensation, where ne

and n, represent the number densities of electrons and ions respectively and A the pro-

jected area of the condensation.

The solar activity effect in the upper atmosphere is believed to be caused to a large

extent by the heating due to absorption (photoionization) of solar extreme ultraviolet (EUV)

radiation. Hinteregger (Reference 12) has shown from rocket observations that the absorp-

tion of this radiation occurs in the altitude range between 150 and 300 km.

The main process producing the emission lines in the extreme ultraviolet is likely to

be the emission due to cascades following recombination on excited levels. Consequently,

the total intensities of these lines can also be expected to be proportional to the aforemen-

tioned integral, if self-absorption is negligible. A close correlation can reasonably be ex-

pected between the decimeter flux and the strongest lines in the extreme ultraviolet range

of the solar spectrum - He II at 304 _k, He I at 584 A, and numerous lines of highly ionized

atoms --since these lines should also originate mostly in the coronal condensations.

The proportionality factor between density and the decimeter flux is observed to be a

function of height and local time and is larger during the nighttime. This behavior is to be

expected from the diurnal variation of the temperature in the atmosphere (References 13

and 14).

The diurnal density variation has an amplitude which increases with altitude. At 210 km

it is only a few percent of the mean value according to the orbital analysis (Reference 15)

of the Sputnik HI rocket and satellite (1958 _, and _2)" At an altitude of 650 km, however,

the amplitude reaches a factor of almost ten, as found by Priester and Martin (Reference 5),

Jacchia (Reference 16), Paetzold and ZschSrner (Reference 17), King-ttele and Walker

(Reference 18). The data showing this effect were obtained mostly from Vanguard I and II

(1958 /32 and 1959 %). These data also revealed that in the diurnal variation the density

reaches its peak at approximately 14 h local time, then declines, and at about sunrise the

density again begins to increase rapidly to its peak value. This behavior results from the

combined action of a time-dependent heat source and thermal conduction. This was pointed

out by Nicolet (Reference 19).

The geomagnetic activity effect in the upper air densities was noted by Jacchia (Ref-

erence 19) as a correlation between the short-lived density fluctuations and the geomag-

netic activity represented by the Kp or Ap indices. This effect was confirmed by density

data obtained from seven satellites during the "November 1960 events" (References 20



and21). It wasalsoconfirmedbyJastrowandBryant(Reference9)whousedthedatafrom
EchoI, andwasfurther verifiedby Paetzold(Reference22)whousedthedatafrom Sputnik
II (1958_2). Theclosestcorrelationof this kindhasbeenobtainedwithdatafrom the
twelve-footballoonsatellite Explorer IX (1961_,) byJacchiaandSlowey(Reference10).

This effect strongly suggests the existence of another heat source in addition to the

absorption of solar EUV radiation. Itseems plausible to attribute this additional heat

source to energy that is ultimately derived from the solar corpuscular radiation or from

its "steady" component, the solar wind.

The existence of such an additional heat source also is suggested by the fourth effect,

a semiannual variation in atmospheric density found by Paetzold and Zsch_rner (Refer-

ence 17) with maxima in March and September and minima in June and July and also in

December and January. This behavior is quite similar to the semiannual variation of geo-

magnetic activity found by Cortie (Reference 23) and discussed in great detail by Bartels

(Reference 24).

Paetzold and ZschSrner (Reference 25) estimate that a decrease of 0.2 erg/cm 2-sec

in the overall flux used for heating during the minima (June-July and December-January)

is required to explain the observed decrease in density. This suggests that the second

heat source, which we shall call a "corpuscular" heat source, normally provides an energy

flux that is a few times larger than the aforementioned value of 0.2 erg/cm _-sec. A

crude estimate may also be obtained from the absolute value and the variation of the geo-

magnetic u-measure defined by Bartels (Reference 24) as the "inter-diurnal variability of

the horizontal component at the geomagnetic equator." In a recent paper by Priester and

Cattani (Reference 26) the semiannual variation of the u-measure was related to a model

of the solar corpuscular radiation dependent on heliographic latitude.

In view of this relationship and with roughly 20 percent semiannual variation in the

amplitude of the u-measure, we might expect a corpuscular heat source with a total flux

in the order of 1 erg/cm2-sec. The measurements from Explorer X by Bridge et al.

(Reference 27)revealed a flux of about 5 ergs/cm2-sec for the solar wind outside the

earth's magnetosphere; thus the present estimate of 1 erg/cm 2-sec for the "corpuscular"

,heat source seems plausible. Since this heat source is likely to have a diurnal variation,

the estimated flux given refers to the diurnal peak value.

These conclusions are supported by the results obtained from the calculations pre-

sented herein of the energy balance of the upper atmosphere, in which the time-dependent

heat conduction equation was used with the condition of quasi hydrostatic equilibrium.

These results showed that a theoretical explanation of the observed atmospheric densities

can be obtained only by considering a second heat source which contributes approximately

the same amount of heat to the upper atmosphere as the EUV heat source.



In this solution,whichrepresentstheobserveddensities,apeakflux of 0.93erg/cm2-
secwasusedfor thefractionof thesolar EUVradiationconvertedinto heatanda peak
flux of 1.03erg/cm_-secfor the corpuscularheatsource.

HEAT CONDUCTIONEQUATIONFOR A GAS IN EQUILIBRIUM

WITH A GRAVITATIONALFIELD

The temperature distribution of the upper atmosphere is governed mainly by thermal

conduction and absorption of solar energy (see Spitzer, Reference 28, and Nicolet, Refer-

ence 29). As the temperature undergoes a diurnal variation, the upper atmosphere expands

and contracts. This expansion and contraction produces a transfer of heat by mass flow.

In the motion of the thermosphere energy is expended or gained as a result of the work

done by or against gravity. In this section we shall give a heuristic derivation of the ap-

propriate equation, which will contain an expansion-contraction term allowing for the heat

transfer due to the diurnal "breathing" of the thermosphere and the work done by or against

gravity.

We shall use Eckart's Equation 9-6 (Reference 30) for the temperature dependence

of a gas undergoing a flow in an external gravity field. By simplifying this equation to one

dimension and expressing it in different notation, we have

3T1 OTo 3_ - 1 Ow q (1)
at +--_-w+ a o a-_ =

This is

T 1
W

T o

Cv

a o

q

one of the linearized equations of hydrodynamics in which:

= the perturbed temperature,

= the vertical velocity of the gas,

= the initial temperature distribution at any initial time,

= the specific heat at constant volume,

= the ratio of the specific heats,

= the coefficient of thermal expansion, which is I/T 0 for an ideal gas, and

= the net gain of heat (in erg/gm-sec) due to heat sources and conduction (will

be given in detail subsequently).

The derivation will be given for a gas with a single constituent, but we shall generalize

later to include a multiconstituent thermosphere.

The vertical velocity of a gas w will be obtained in a form based upon the considera-

tions used by ionospheric physicists in studying the drift motions of the F2m. x level of the

ionosphere (see Ratcliffe and Weeks, Reference 31). As the atmosphere expands and con-

tracts, we shall assume that a cell of gas reaches an altitude z + wAt. at a time t + At,



wherethe pressure is the same as at the altitude z at the previous time t, i.e.,

p(z + wAt, t + At) = p{z, t). Since this motion is very slow (on the order of 10 km/h

at 500 km) we shall also assume that the pressure, to the first order, follows the baromet-

ric law. Thus

P0 exp - RT(t + At ) dz' = P0 exp - _ dz ,

where g is the acceleration due to gravity, R the universal gas constant, and Po is the

pressure at the earth's surface which for our purposes is constant. We expand the above

in powers of At according to

1 1 ( 1 aTA\
T(t + At} - T(t) \1 - T(-_-_gt- t)

and obtain

yo = 1 aT (2)w : T _-_-dz'

or, in the spirit of the linearized Equation 1

sTw : T O St dz'

By differentiating the latter with respect to z, we have

t_w

0z

0To /" 1 ST 1 ST

Oz Jo To 2 St dz' -To St

which we substitute into Equation 1:

or

OTt c)To /': 1 OTl 0T1 q

St + 7 _ T°Jo To2 St dz' + (Y - I) Ot - C v

0TI 0T° foe 1 0TI qSt +_T0 To2 St dz' = _p ,
(3)

where Cp is the specific heat at constant pressure.
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Equation3 is our basicequation;weshall integrateit numerically,takingfor T o,

aT0/0z, and the non-linear terms in q, their values at t - At, where At is our integration

interval. In this fashion new initial solutions are determined which will be used as the

unperturbed functions T O in each step of the integration process. Thus the numerically

determined perturbed solutions will not differ greatly from the unperturbed solutions at

any time. With this understanding for the treatment of the non-linear terms, we drop the

subscripts 1 and 0.

The second term on the left side of Equation 3, being proportional to the gradient of

the temperature, represents a mode of "convective" transport of heat owing to the diurnal

expansion and contraction - a free expansion of a non-isothermal gas in a gravitational

field. In its present form this term also partially includes the effects of gravity. The

main effect of gravity in the heat balance is contained in the right side of Equation 3 where

C appears instead of C.

It remains to be shown that the assumptions leading to the expression for w are con-

sistent with Eckart's Equation 9-5 for the variation of the perturbed pressure, which in

the present one-dimensional notation is

0Pl 0Po RTo aw

+'-_w + po T M Oz - (T-l)Poq' (4)

P0 being the unperturbed pressure and P0 the unperturbed density.

From hydrostatic equilibrium, we have dP0/dz = -p0 g and substituting in Equation 4

the expression for w we obtain

OPl fff T_ 2 0TOt - Po gT Ot dz'

or from the perfect gas law p = p RT/M ,

0Pl

0t -

P0 3Tl gP0 M f"

W Jo

From the conservation of mass,

1 0T

T 2 Ot dz' •
(s)

pdz = dz = 0 •
(6a)



Thus by integrating Equation 5 over z, we obtain

f_ Po 0T fogPOMfo 1 OT(z') (6b)T 0t dz = dz _ dz' T_(z') 0t

The double integral on the right side of this equation can be transformed in the following

manner: it is an integral over an area in the Iz, z') plane bounded by the z-axis and

the z = z' line; and the order of the integration can be changed by first integrating with

respect to z from z = z' to z -- % and then over z' from 0 to z' = _. Thus Equation6b

becomes

P0 0TI f_ 1 0T(z' ) gMT 0t dz = To2(Z, ) 3t ,_po(z)dz dz'
dz w

If the foregoing is to be true for all possible variations of aT/0t, we must have

Po - ]ro P0 (z')dz'

which is another form of the barometric law for the case of a non-isothermal atmosphere.

By differentiating the above with respect to z to obtain

°P0 1 gM 1 OTo f®__
c_z = ---T":-R-Po To2 c_z z p(z'ldz'

and by using Equation 6a, we have

Integrating, we have

aPo 1 gM Po 3To

Oz - --_o -_" Po - TO Oz

PO0 TO exp - _ dz' , (7)

where Poo, Too are the values of P0 and T O, respectively, at z = 0.

Thus, we see that the assumption of hydrostatic equilibrium (in the approximation of

the linearized equations) for deriving w is consistent with the equation for the variation of
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pressure with time. We can integrate the time-dependent equation (Equation 3), assuming

that Equation 7 holds at any instant of time.

In order to generalize the above expression for a multi-constituent thermosphere,

we shall now give the expression for q:

qP = Qcond

The term

+ Q,,_ + Qo, + Q' .

is the net gain of heat by conduction, where

SAini(z)
KIT) =

S ni{z)

(8)

T I/2 (z) (9)

Qe.v = eini{z ) dLFhcri{)k)e-_'l (A'''t) , (10)

f_ ni(z)ri(h,z,t} = _i{k) c--_-_sOdz

% (k) is the cross-section for absorption by the i th constituent of radiation of wavelength

), in the region d)_; Fx is the incident flux of wavelength £ in the region d)_ at the top of the

The heat source due to the absorption of the solar EUV-radiation is given by

A(H) = 2.1 × 103;

A(He) = 9.0 × 102;

A(0) = 3.6 x 102;

A(02, N2) = 1.8 × 102 .

where

is the coefficient of heat conduction, Ai is a constant depending upon the constituent i. and

ni is the number density of atoms or molecules of the i th constituent. From Chapman and

Cowling (Reference 32) (1960) (see also Nicotet, (Reference 29)) we have the following

values (in erg/cm-sec-°K 3:_ ):
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atmosphere;and8is thezenithangleof thesun,Ei is anefficiencyfactor for the conversion
to thermosphericheatof energyin theextremeultraviolet absorbedby the i th constituent.

Theheatlossdueto thecoolingby atomicoxygenradiatingin the infrared is given
by (Reference33)

Qox = - n o f(T) ,

where

f(T)
E l E 0 '

no is the number density of atomic oxygen; E 1 the energy difference between the 3P 1 and

3P 2 levels of atomic oxygen; E o the energy difference between the 3P 0 and 3p 2 levels of

atomic oxygen; w0, w1, w2 the statistical weights of the various levels; and A12 the Einstein

coefficient for the transition 3P 1-3P 2.

The observations of the geomagnetic activity effect and of the semiannual effect

strongly indicate the existence of another heat source, the energy of which is very likely

provided ultimately by the solar corpuscular radiation and/or its "steady" component,

the solar wind, for which we reserve a quantity Q' in our basic formula. Detailed consid-

erations about this source are given later.

We need the expression for the total heat capacity at constant pressure, which we take

as

j_Cp =Z ni(z)kBi '

where k is the Boltzmann constant and Bi is a constant depending upon the constituent:

= 3.5 for diatomic molecules;B i 2.5 for monatomic molecules.

Equation 3 may be rewritten as

( ) f:'OT OT 3T OT

OAz- K(T)_--_- - /:Cp-'O--_-T o"_-ff'z "dz' + Q_uv + Oox + Q' = pCp-_--
(11)
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whichweshall integratenumerically. This equation is linearized by evaluating the non-

linear factors from the temperature and density values at the previous time step in the

integration procedure. All quantities in Equation 11 depend on altitude z and time t. After

the temperature profile is determined, the number densities n i are calculated by means of

the barometric relation

I-f_" mig(z') 'I

T(z°) exp dz
ni(z,t) = ni(Zo)T(----_,t} kT(z',t)

o

(12)

The numerical procedure used to integrate Equation 11 was the implicit method (see

Diaz et al., Reference 34) for solving parabolic equations. This method avoids the problem

of instability which can arise from application of the explicit method (see Lowan, Refer-

ence 35). The boundary conditions are a given initial temperature distribution, the tem-

perature and densities of the constituents at the lower boundary held constant in time,

and a zero gradient of the temperature at the upper boundary. The numerical integration

was performed on an IBM 7090 computer.

Various integration intervals in time and space were tested, At = 0.25 hours and

Az = 1 km were found to be satisfactory. The temperature gradient was zero at the upper

boundary, which was taken to be 1000 km. An upper boundary at this altitude assures that

the gradient in the temperature goes smoothly to zero. Several initial temperature pro-

files were used to discover how rapidly the results converge to a final steady temperature

profile of diurnal variation. This procedure necessitated integrating over a period of four

or five days in real time to achieve convergence, regardless of the initial temperature

profile used.

A small quantity equal to 10 -3 added to cos _ to avoid the divergence when cos e goes

to zero corresponds to an error of 2/3 minute in time.

During the computations it was found that the "convective" term corresponding to heat

transport caused by the diurnal variation of the temperature is small. It decreases the

mean diurnal temperature of the exosphere by lessthan 5 percent.

The total pressure was computed by summing up the partial pressures due to each con-

stituent, which were calculated from the perfect gas law

Pi {z't) = ni(z't) kT(z't ) (13)

The total density was calculated by means of

p(z.t) = _i hi(Z, t )rni , (14)



where rn, is the mass in grams of the i th type of molecule.

weight was calculated from

Then the mean molecular

11

M(z,t} _i rll {z,t )Mi= (i5)

_i ni{z't)

Finally, the scale height was computed by using

RT(z,t)

H(z,t) = M(z,t}-g(z) (16)

The densities at heights greater than 1,000 km were computed by the following method.

In the isothermal region

I s 1I

m i

ni(z,t) = rii(Zm,t) exp -_ g(z') dz' ,
z m

(17)

where T m is the temperature in the isothermal region which begins at the altitude z,

was taken equal to the upper boundary of the integration (1,000 km).

tion 17 we have for the number densities at heights above z,

ni[z,t) = ni(zm,t) exp

where the acceleration of gravity is

migmR _ z - Z 1-kTm(t) R - )_ _

which

By integrating Equa-

(16)

I_ Rm ) 2g(z) = g® Rm - z + z ' (19)

gm being the acceleration of gravity at the distance 1_ from the centerof the earth, at

height z.

INTERPRETATIONOF RESULTS

In the attempts to obtain a theoretical time-dependent model of the upper atmosphere

by solving the heat conduction equation for the atmosphere in quasi hydrostatic equilibrium

(Equations 11 through 16) -- a model which should represent the observed densities satis-

factorily, the absorption of solar EUV radiation combined with the heat loss Qox due to
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infrared reradiationby oxygenatoms wastheonlyheatsourceusedat first. Thelossdue
to reradiationhasonly asmall influenceon thetemperaturedistribution,ashasbeenpre-
viouslynotedby HuntandVanZandt(Reference36). (Thesource Q'in Equation11was
takenas zero in thesefirst attempts.) Thecalculationsyield a diurnal maximumtempera-
ture anddensityat 17h local time, notat 14h asobservedfrom satellite dragdata. The
lossesdueto conductionandQoxare notsufficientto balancetheheatinputduetoQeuvand
therebyyield a maximumtemperatureat 14h. Furthermore,theratio of daytimemaximum
temperatureo_densityto nighttimeminimumtemperatureor densityrespectivelyis much
larger thantheobservedratio: thecalculationsemployingtheEUVabsorptionastheonly
heatsourceyield a temperatureratio of 2.6,while theobservedvalueis about1.5.

Theseresults arequalitativelyindependentof boundaryconditions.For testing, two
different setsof numberdensitieswereusedwhichdifferedconsiderablyin the important
ratio O/O2 at the lower boundary. Diffusive equilibrium was assumed to hold for all alti-

tudes above 120 km. The numerical values for the boundary conditions at 120 km are given

in Table 1. A temperature of 355°K was chosen in both cases; no attempt was made to ac-

Table 1

Boundary Values at 120 km Altitude

(T = 355°K)

Constituent

Number Density

(particles/cm3)

S 2

o_
O

He

H

Set 1"

5.80 × 1011

1.20 × 10 '1

7.60 × 101°

2.50 × 107

4.36 × 104**

Set 2**

5.95 × 1011

3.13 x 1010

2.57 × 101'

2.50 x 107*

4.36 x 104

*Values are from Nicolet (Reference 37)

**Values are from Jastrow and Kyle (Reference 38)

count for a diurnal variation of this tempera-

ture, since no considerable variation was ex-

pected at this altitude. However, further

investigation is desirable.

Mean values for the photoionization cross

sections were used: 15, 15, and 12 × 10 -'s

cm 2 for N 2 , O 2, and O respectively. These

averages are valid for the wavelength range

from about 60 to 900 A.

The incident flux was chosen to yield a

model which is in agreement with the average

observed densities and temperatures, specifi-

cally around 600 km. As an illustration, con-

sider the maximum and minimum values of

temperature and density at 600 km calculated

for two different fluxes of the EUV radiation: In

the first example the flux was 1.8 erg/cm 2-sec

and the first set of boundary values (Table 1) was used. A maximum temperature of 1959°K

was obtained at 17 h local time, and a minimum of 849°K at 6h . The corresponding densities

are 1.59 × 10-1Sand 3.44 × 10 -'7 gm/cm _. In the second example the flux was 2.2 erg/cm 2-

sec and the second set of boundary values was used. The maximum and minimum tem-

peratures and densities obtained at 600 km are 2026°K at 17 a local time, 910°K at 6h , and

3.81 × 10 -Is and 1.47 × 10-1_ gm/cm _ respectively.
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Thepeakfluxesare generallyconsiderablyhigherthantheflux of 1.1erg/cm2-sec
requiredbyD. C. HuntandT. E. vanZandt(1961),whocomparedtheobserveddataat
diurnal maximumwitha time-independentsolution. This discrepancyoccursbecausethe
time-independentsolutioncanbeappliedonlyto definediurnal averagevaluesif thetime-
independentflux is consideredasa diurnal average.A comparisonwith theobserveddi-
urnal maximumvaluesthereforeyieldsunacceptableconclusions.

Thediurnal variationof thetemperaturecalculatedwithonlytheEUVheatsourceis
givenin Figure 1for analtitudeof 600km (dashedline), alongwith thetemperaturedis-
tribution (solid line) whichwell representstheobserveddata.

It is concludedthat noagreementcanbeobtainedbetweentheobservationsandatheory
basedona EUVheatsourcealone. Furthermore,anextremelyhighefficiency(70to 90
percent)wouldbe requiredfor theconversionof theEUVflux into thermosphericheatif
this theory is to comparewith Hinteregger'srocket measurements- a total flux of
2.5erg/cm2-sec in therangefrom 44to 1,000A (Reference12).

Thereforetheexistenceof a secondheatsourcewith thefollowingpropertiesis
stronglysuggested:a maximumin the mid-morninganda minimumin theearly or mid-
afternoon,a small amountof heatingduringthenight,andanaveragemagnitudecompar-
ableto theheatprovidedbythe EUVflux.

2000

A heat source with these properties is re-

quired to represent the density observed at those

times when a large diurnal bulge is found. For

the comparison the Bonn Observatory model of

1961 (Reference 39) was used; it is in very good

agreement with the density data obtained by other

groups• This model is reduced to years of high

solar activity, represented by a 10.7 cm solar

radiation flux of s -- 200 × lff _2 w/m2-cps or

by the corresponding flux S = 170 × 10 -22

w/m2-cps of the 20 cm solar radiation.

The time variation of this new heat source

which we have called the "corpuscular" heat

source, might be correlated with some other

geomagnetic phenomena which would serve as

indicators of corpuscular activity• The inten-

sities of the micropulsations observed by

_., 1500

_I,/

rr"

L_

Q.

_E

i000

5OO o

.... Calculated with Q,uv
as only heat source

Calculated with Q,u, +Q'

1 [.....
6 12 18 24

LOCAL TIME (hours)

Figure 1--Diurnal variation of the exo-
spheric temperature calculated wlth an

EUV heat source alone (Q v) and cam-
• • • • ely II

breed wtth the add_honal corpuscular

heat source (Qeuv + Q')"
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T I

Fluxof Q,_,,

I ..- ---- Ruxof Q'

//,,,\
-/4-/-- -,-\

°oI 6 ,2

LOCALTIME (hours)

F_gure 2--Diurnal var|ation of the fluxes of the

EUV heat source (Qeuv) and of the "corpuscular"
heat source (Q')

Campbell (Reference 40) in California

show the main maximum at about 9h

local time, and thereby have the prin-

cipal property required. A physical

connection of these pulsations with the

second heat source proposed here is

plausible, but direct observations of

micropulsations in the ionospheric

F-layer would be desirable. The geo-

magnetic field strength at the equator

also has approximately the time-varying

properties required.

The chosen diurnal variation of the

flux of the corpuscular heat source which

is given in Figure 2, together with the

fraction of the solar EUV flux converted

into heat in the thermosphere (having a

peak value of 0.93 erg/cm2-sec). This

implies an efficiency factor of 37 per-

cent. The peak value of the flux of the corpuscular heat source that yields a good agree-

ment with the observed densities is 1.03 erg/cm 2-sec. This value is in good agreement

with the estimates obtained from the semiannual variation (see the Introduction). It also

agrees with the magnitude of the heat source proposed by Dessler (Reference 41) -- a

source which is due to the dissipation of hydromagnetic waves generated by the solar

corpuscular radiation. The energy dissipation takes place in the F region of the iono-

sphere. For the altitude dependence of our corpuscular head source Q'an analytic ap-

proximation to the dissipation curve given by Dessler is used. This altitude dependence

is also similar in shape to the heat input due to absorption of solar EUV radiation.

The expression used for Q' is

where

I( ) (;°)1Q, _ F z - z o z
sl _ s2 exp - sl - exp s f(t)

: i Q'(z,t
Z 0

is the flux of this heat source at the time of'its peak value. The values chosen for s_, s 2,

a_d z 0 are 60, 40, and 120 km respectively which yield a maximum for Q' at 170 km. The

diurnal variation f (t) is normalized to a peak value equal to unity and is represented by

the following Fourier coefficients:
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ao = +0.427, aI = -0.263, a s = +0.063,

a 3 -- -0.015, a 4 = +0.024, a s = -0.006,

a 6 = - 0.004,

b I = +0.369, b 2 = -0.156, b 3 = +0.010,

b+ = +0.208, b s = -0.007.

By using this corpuscular source in addition to the EUV heat source good agreement

is obtained between observed and calculated densities. The better general agreement is

obtained with the first set of boundary conditions in Table 1. The solid line in Figure 1

shows the calculated diurnal variation of the exospheric temperature. In Figures 3 and 4

the calculated diurnal variations of densities are compared with the densities of the Bonn

Observatory model (Reference 39). In the altitude range from 400 to 700 km, where the

Bonn model is based on the most reliable density determinations, we have an almost per-

fect agreement. For altitudes below 400 km the agreement is also satisfactory. In the

range above an altitude of 1,000 km the Bonn Observatory model is based on densities

derived from the satellite Echo I by RSmer (References 6 and 7) using a method which

E

E

Z

Jm

I0-_
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10-_

10 -_ i

10 -_
0

I 180 km

• 200 k__

6 12 18 24

LOCAL TIME (hours)

E

E
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Z
L=J
¢t

lO-lg
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F_gure 3--D_urnal variation of density for
selected altitudes From 160 to 600 km. The
solid curves give the values calculated with
Table 1. The circles are densities taken
From the Bonn University Observatory ob-
servational model of 1961.

Figure 4--Diurnal variation of density for selected
altitudes from 700 to 2,000 km. The solid curves
give the values calculated with Table 1. The
circles are densHies taken from the Bonn Univer-
sity Observatory observational model of 1961.
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takes into account the diurnal bulge by considering how the orbit traverses the bulge. An

auxiliary model was needed for his calculations. The one he used early in 1961 was based

on an extrapolation of the altitude variation of the diurnal amplitude; this variation in-

creased systematically with height. In an atmosphere containing a helium layer (where

the mean molecular weight decreases with altitude and time) the amplitude of the diurnal

density variations begins to decrease again above 1,000 km (Figure 4). Therefore, the

maximum densities in the Bonn model are too great for altitudes above 1,000 km by an

estimated amount indicated by the arrows in Figure 4. Those reduced densities are then

in better agreement with our calculated densities. The densities calculated by Bryant

(Reference 9) using a general density scale height of 260 km are all placed well between

our maximum and minimum density curves in the altitude range from 1075 to 1450 km.

The temperature, scale height and mean molecular weight are given as functions of

altitude for four selected local times of the day in Figures 5, 6 and 7 respectively. It may

be noticed that the i0 h and the 22 h temperature curves in Figure 5 cross at about 170 km.

This is related to the fact that the daytime densities in the altitude range from 130 to 190

km are lower than the nighttime densities, in agreement with the observational model by

Martin et al. (Reference 39). The mass difference between the nighttime and daytime

densities below 190 km is sufficient to provide the mass for the diurnal bulge above that

height, since our model conserves the total mass (see Equation 6).

In Figure 8 the densities of the observational model at an altitude of 600 km are com-

pared with the densities calculated for both sets of boundary conditions which differ

considerably in the ratio O/O 2 at the lower boundary (120 km). In general, both sets

20001

1500

Figure 5--Temperature as a
function of altitude from _.
120 km to 600 km for four
selected local times. <=

iooo

500

14 h

10 h

22 h

1 O0 200 300 400 500 600

ALTITUDE (kin)
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afford a satisfactory agreement in the range

from 200 to 600 km; the first set yields a

better fit with the observed data at 600 km

(Figure 8), but the discrepancy is not large

enough to eliminate the second set. The ob-

served densities may need some systematic

corrections, since the atmospheric bulge was

only approximately considered in the reduc-

tion of the observational data (Reference 39).

It is interesting to compare the exo-

spheric maximum and minimum temperatures

for these two sets of calculations. From the

first set of boundary conditions the results are

1770°K for the diurnal maximum and l160_K

for the diurnal minimum. The correspond-

ing temperatures for the second set are

1515 ° and 975¢_K respectively. These values

demonstrate the sensitivity of the exospheric

temperature to the boundary conditions and,

especially, to the ratio O//O 2. In the first

set this ratio is 0.63; in the second set, 8.2.
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Figure 6--Pressure scale heights as a function
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Figure 8--Comparison oF the
calculated densities using
the two sets oF boundary
conditions given in Table 1
with the observed data of
the Bonn 1961 Model at an
alt;tude of 600 km.

The physical properties of the upper atmosphere based on the first set of boundary

conditions (Table 1) are presented in Appendix A as functions of altitude from 120 to

2,050 km for selected hours in local time. This model applies to the equatorial and tem-

perate zones of the earth and is valid for those years when the solar activity can be rep-

resented by an average flux of 200 × 10 -2s w/m s -cps for the 10.7 cm radiation (or a flux

of 170 × 10 -22 w/m s -cps for the 20 cm radiation).

It should be emphasized again that to obtain good agreement with the observational

model a heat source in addition to the solar EUV flux is required. It is probable that this

heat source derives its energy ultimately from the solar corpuscular radiation.

In the present calculations good agreement was obtained with the observational models

with a diurnal average flux of 0.44 erg/cm2-sec and a peak value of 1.03 erg/cm s -sec at

9 h local time, combined with an EUV heat source having an average flux of 0.30 erg/cm2, -

sec and a peak value of 0.93 at 12 h local time.

Of the four effects mentioned in the introduction, this calculated model is for the di-

urnal variation alone. The three other effects could be represented by changes in the total

fluxes of the two heat sources, both of which are expected to vary considerably during the

11-year solar cycle. The analysis of the density determinations from satellite drag meas-

urements during an entire solar cycle could reveal the necessary information about the

flux variations of the two heat sources. But we should also be prepared for the possibility

that the diurnal variation of the corpuscular heat source may change in shape and in posi-

tion of the maximum during the colar cycle. Therefore, direct measurements of the solar

EUV radiation and of the solar wind intensity outside the magnetosphere are urgently de-

sired for at least one solar cycle.
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Appendix A

Properties of the Upper Atmosphereas Functions of Local Time

The properties of the upper atmosphere are tabulated as a

function of localtime (for every hour of the day) and as a function

of altitude (from 120 km to 2050 km). The quantities listed are:

temperature (°K); density (gm/cm3); pressure (dynes/cm2); scale

height (km); mean molecular weight, and number densities

(cm -3) for N2, 02, O, He, H. At the beginning of each page the

local time (in hours); the cosine of the zenith angle _ of the sun

during the times of equinoxes on the equator; and the temperature

gradient at 120 km in °K/km (labeled INT GRAD) are given.

The model used applies to the earth's equatorial and temper-

ate zones when the average solar activity is represented by a

solar radiation flux of 200 × 10 -22 w/m_-cps at a wavelength of

10.7 cm.
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